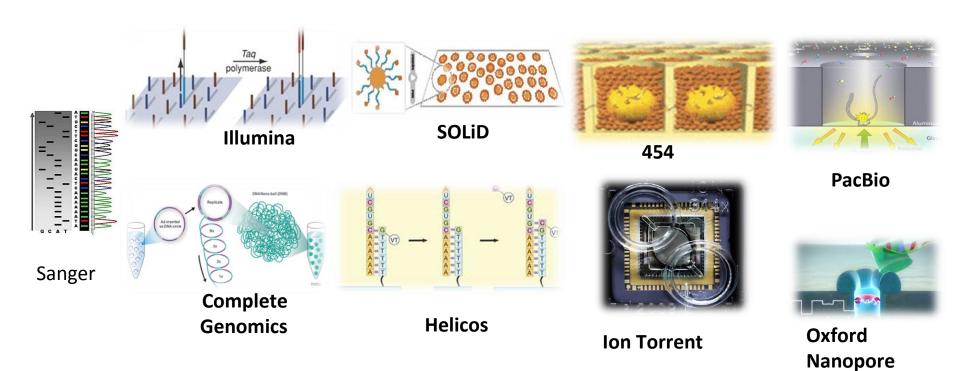


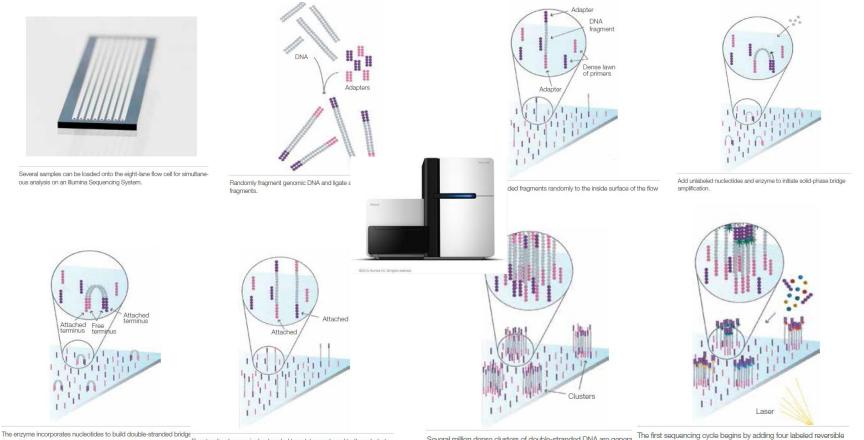
Variation detection based on second generation sequencing data

Outline

- Summary of sequencing techniques
- Data quality assessing and filtering
- Mapping the short reads


GATEGATEGATEG

- Detection of SNPs
- Detection of SVs
- Detection of CNVs



PGATCGATCGATCGATCGATCGAT

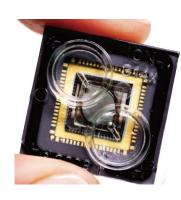
Sequencing technologies

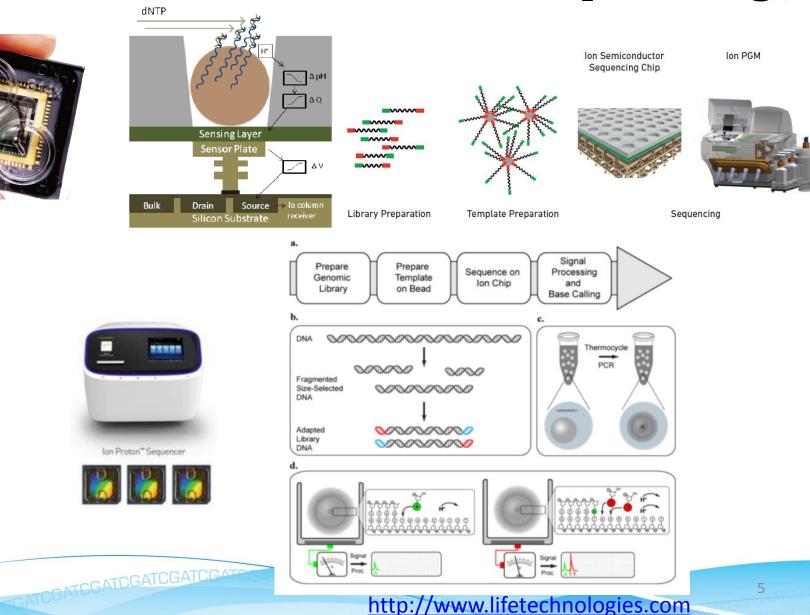
Illumina sequencing

the solid-phase substrate.

Denaturation leaves single-stranded templates anchored to the substrate.

Several million dense clusters of double-stranded DNA are genera each channel of the flow cell.


The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

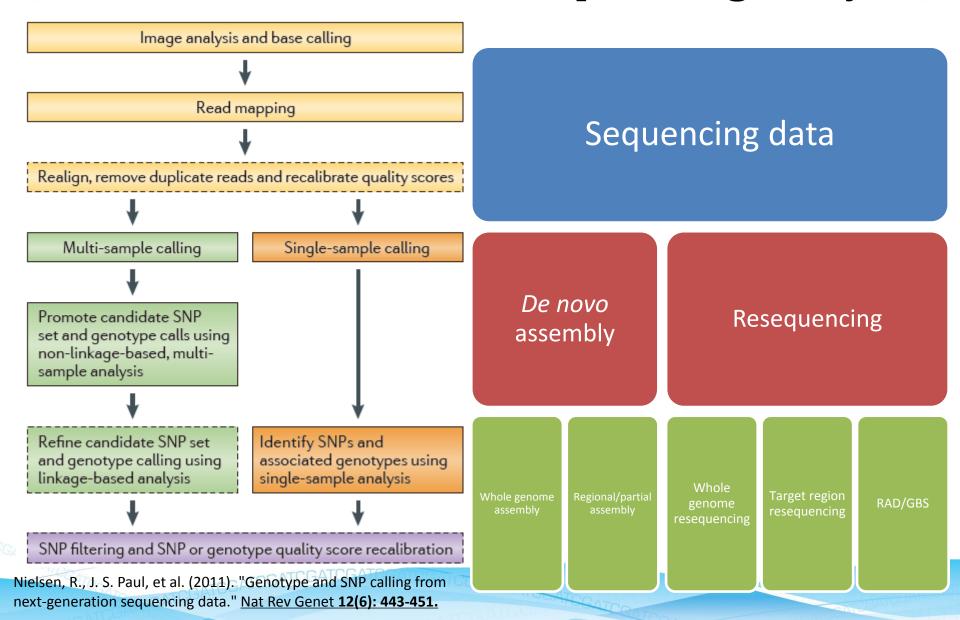

Technology Spotlight: Illumina® Sequencing

4

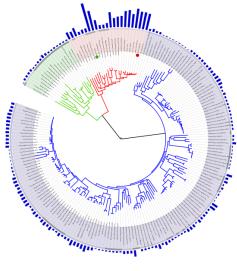
Ion Torrent sequencing

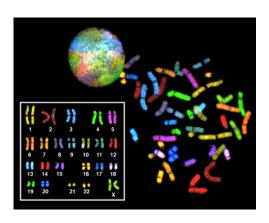
GATOGATOGATO

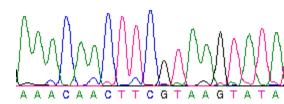
GATCGATCGATCGATCGATCGAT


Sequencing techniques

Platform	Illumina MiSeq	Ion Torrent PGM	PacBio RS	Illumina GAIIx	Illumina HiSeq 2000	
Instrument Cost*	\$128 K	\$80 K**	\$695 K	\$256 K	\$654 K	
Sequence yield per run	1.5-2Gb	20-50 Mb on 314 chip, 100-200 Mb on 316 chip, 1Gb on 318 chip	100 Mb	30Gb	600Gb	
Sequencing cost per Gb*	\$502	\$1000 (318 chip)	\$2000	\$148	\$41	
Run Time	27 hours***	2 hours	2 hours	10 days	11 days	
Reported Accuracy	Mostly > Q30	Mostly Q20	<q10< td=""><td>Mostly > Q30</td><td>Mostly $>$ Q30</td></q10<>	Mostly > Q30	Mostly $>$ Q30	
Observed Raw Error Rate	0.80 %	1.71 %	12.86 %	0.76 %	0.26 %	
Read length	up to 150 bases	~200 bases	Average 1500 bases**** (C1 chemistry)	up to 150 bases	up to 150 bases	
Paired reads	Yes	Yes	No	Yes	Yes	
Insert size	up to 700 bases	up to 250 bases	up to 10 kb	up to 700 bases	up to 700 bases	
Typical DNA requirements	50-1000 ng	100-1000 ng	~1 µg	50-1000 ng	50-1000 ng	

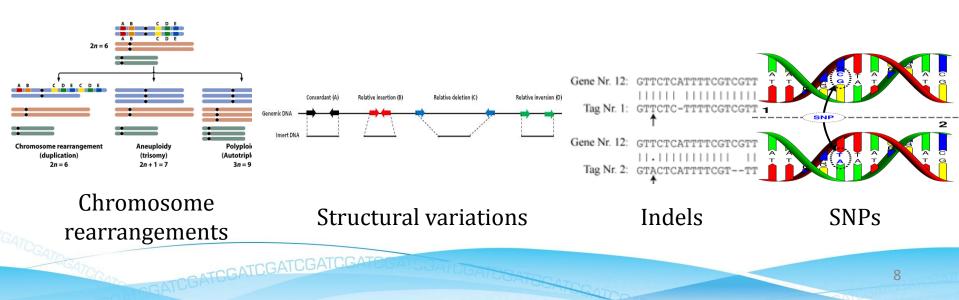

Quail, M. A., M. Smith, et al. (2012). "A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers." <u>BMC Genomics **13: 341.**</u>


Flowchart of sequencing analysis

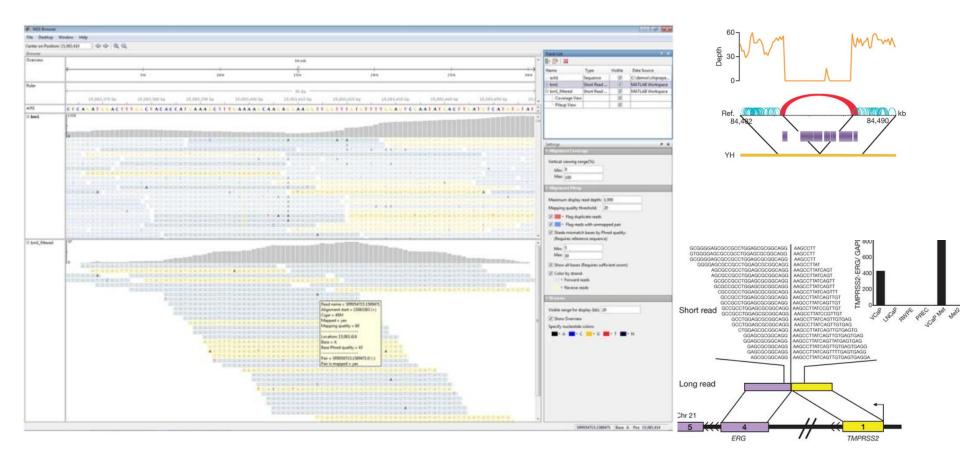


Different genomic variations

华大基因研究院



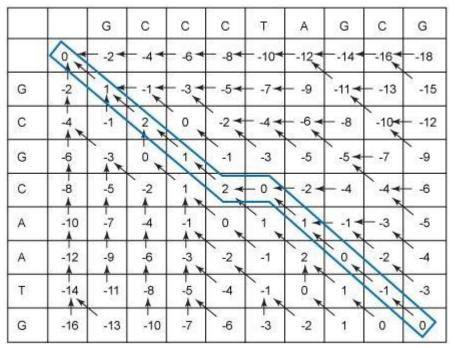
Genome size


Karyotypes

DNA sequences

CGATOGATOC

Detection of variations



- Find the sequenced read's placement in reference genome
- Calculate the coverage and depth distribution of the sequenced reads
- Sequencing quality evaluation

GATEGATEG

• Important for variation detection

Previous mapping tools

Smith-Waterman

• Modified to do local alignment

ATEGATEGATEGATEG

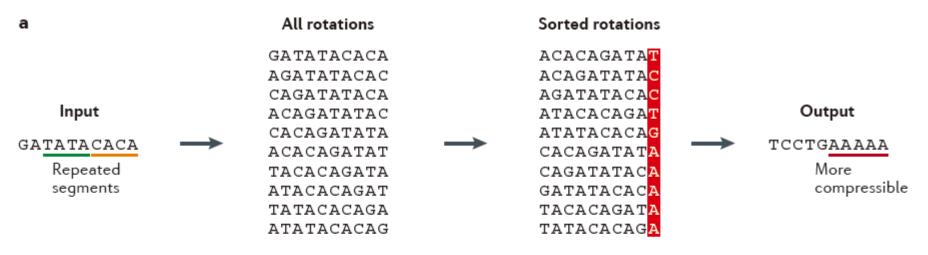
Needleman-Wunsch

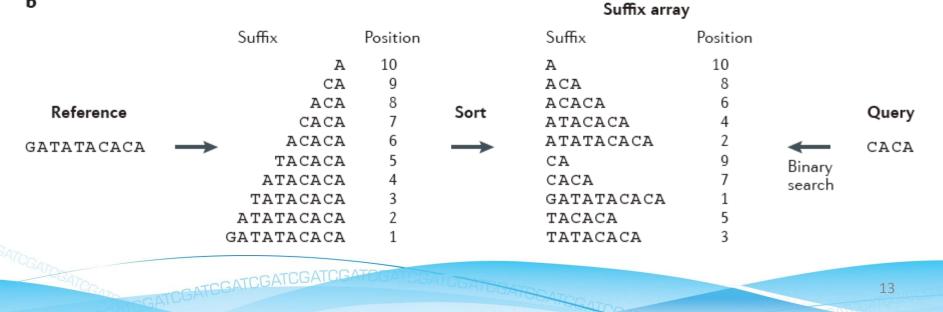
- Global alignment algorithm
- An example: align COELACANTH and PELICAN
- Scoring scheme: +1 if letters match, -1 for mismatches, -1 for gaps

COELACANTH

P-ELICAN--

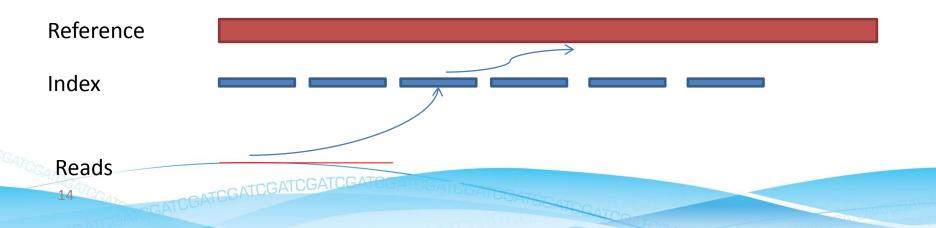
BLAST


- Three heuristic layers: seeding, extension, and evaluation
- Seeding identify where to start alignment
- Extension extending alignment from seeds
- Evaluation Determine which alignments are statistically significant


- Differences between traditional and next-generation sequencing technology
 - reads length
 - data capacity
- Algorithm change to meet the data characteristics of the sequencing technology
 - traditional aligner: global or local alignment; scoring matrix; dynamic programming and trace-back
 - Next-Gen aligner: Indexing & Bitwise operation
- Does blastall/blat still work?
- Short Oligonucleotide Alignment/Analysis Package

华大基因研究院 BGI's research

Index the genome



Ь

- Comparing to BLAST, BLAT, short reads aligner applied looking-up method.
- Index of the reference were made in order to help the process of looking-up.
- Seed were first looked up by using index and then sequences were extended.

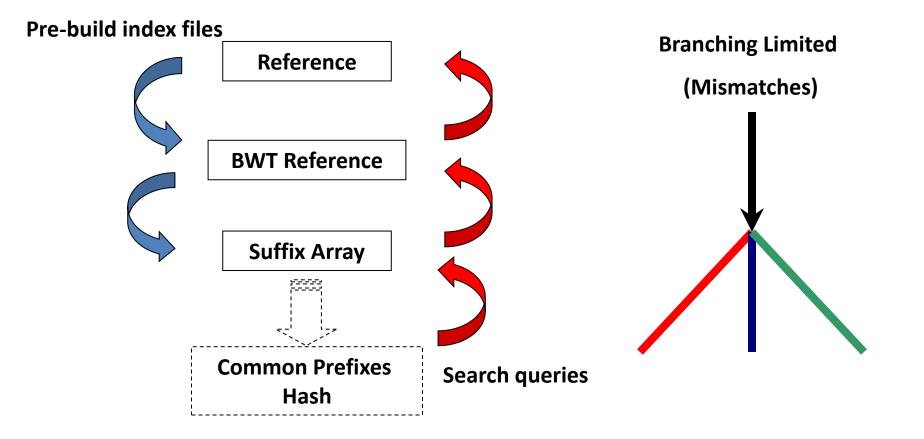
Features of SOAP

- Fast and efficient
- Mode of pair-end mapping
- Permit gaps within alignments
- Trim of reads permitted

Program	Time consumed (s)	Reads aligned (%)
blastn (-F F -W 11)	165780	85.47
blastn (-F F -W 15)	150 660	84.66
Blat $(-tileSize = 8)$	22 032	85.07
Eland	166	88.53
Maq	458	88.39
Soap	134	88.46
Soap iterative	161	90.9
Soap iterative + gapped	486	91.15

GATEGATEGATEGA

Algorithm of SOAP2


- Indexing
 - Split read into parts, which used to anchor the exact matching region in the reference, excluding much of the unwanted region.
- 2way-BWT (Burrows-Wheeler transform) provide a excellent solution for the computing complexity
 - Memory effective (~7G memory need for 3G genome).
 - Fast indexing (2 minutes to finish 1M 35bp single end alignment).
- Thread Parallel Computing

GATEGATEGATEG

- Make fully use of process and save time.
- Bitwise operation
 - Encode each base into 2 binary bits, and use exclusive-or to check if two bases are the same.

Flowchart of mapping

TEGATEGATEGATEG

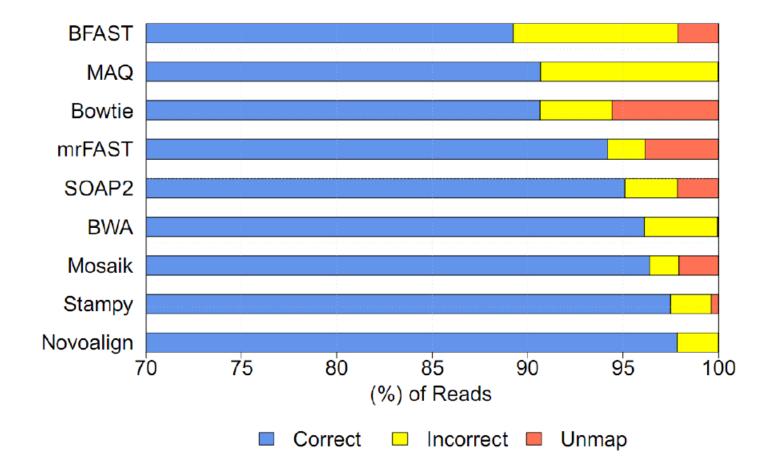
BWA

- Burrows-Wheeler Alignment tool (BWA), the read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT);
- Allowing mismatches and gaps;

GATEGATEGATEGA

- BWA is ~10–20× faster than MAQ, while achieving similar accuracy;
- BWA outputs alignment in the SAM format
- Variant calling can be achieved by SAMtools software package

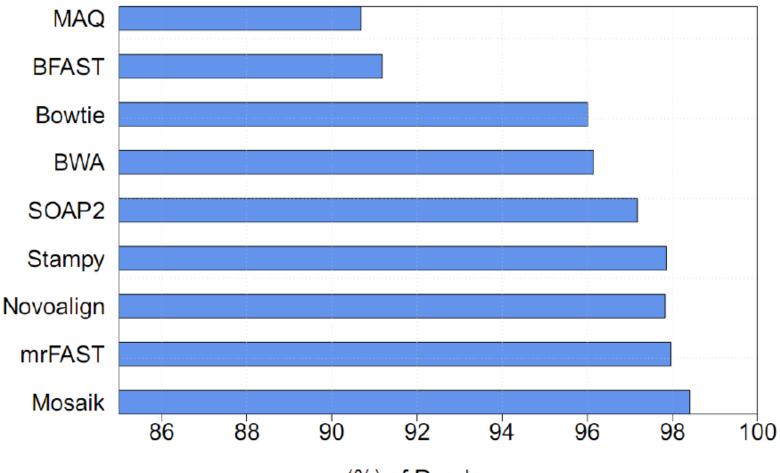
SATOGAT


Alignero	CPU-TIME (min)			RAM (G)				
Aligners	35	75	90	101bp	35	75	90	101bp
BWA	50	14	13	13	3.2	3.2	3.2	3.1
Bowtie	5	4	4	4	2.9	2.9	2.9	2.9
BFAST	300	360	240	360	16.75	16.75	16.75	16.75
MAQ	300	180	150	132	0.8	0.6	0.6	0.6
Mosaik	122	50	51	60	19	19	19	19
mrFAST	900	284	273	231	8	2	1.7	1.5
Novoalign	149	18	20	21	5.5	5.5	5.5	5.5
SOAP2	9	6	7	9	5.6	5.6	5.6	5.6
Stampy	206	109	60	59	2.7	2.7	2.7	2.7

JGATOGATO

PGATCGATCGATCGATCGATCGAT

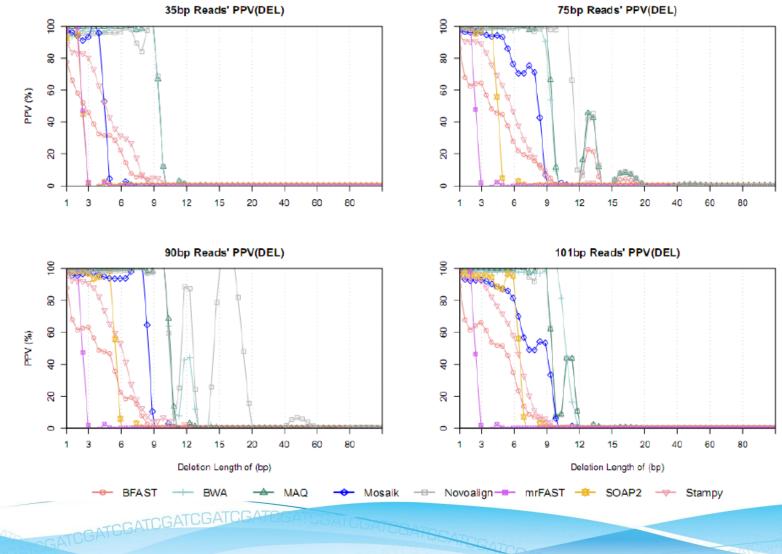
Sensitivity of mapping



20

ATOGATI

Correctness of mapping


(%) of Reads

GATCGATCGATCGATCGATCGAT

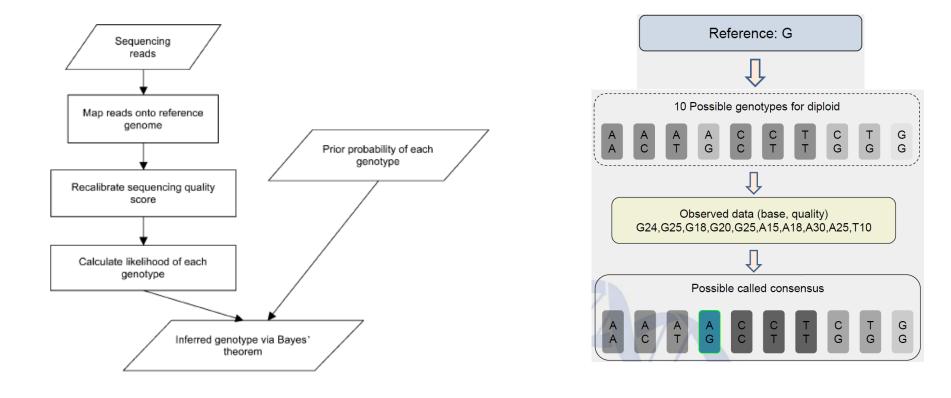
ATCGATOGATO

Alignment with insertion

- Short reads mapping need specific aligners
- Many aligners are available and there are different features.
- No best aligner exists, and most of them are acceptable.
- Mapping is important in variation detection.

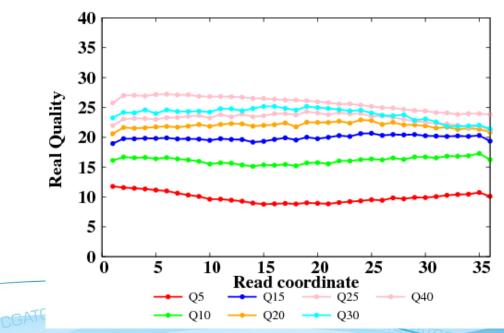
- Well-studied variation
- Better representing demographic history
- Method of detection is relatively mature
- Provides more information for follow-up studies
- Detect SNPs in individuals
- Detect SNPs in population

- SOAPsnp was developed for consensus calling and SNP detection based on the Solexa sequencing technology.
- SOAPsnp takes Bayes's theorem as statistic model for SNP calling, it considers:
 - Sequencing quality
 - Likelihood calculation based on observed data
 - Experiment factors

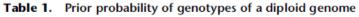

GATEGATEGATEG

- Prior probability
- Alignment uniqueness and accuracy
- Using dbSNP as prior probability

ATGACGGTATGCT ACGAGAT ACGAGAT ACGAGAT ACGAGAT ACGAGAT ACGGGAT ACGGGAT


GATOGATOGATOF

SOAPsnp



- SNP identification can be inferred by counting mismatch numbers.
- But, sequencing quality is important for distinguishing sequencing error from SNP, especially for Solexa sequencing.

$$P(T_i|D) = \frac{P(T_i)P(D|T_i)}{\sum_{x=1}^{S} P(T_x)P(D|T_x)}$$

- D: is the observed data in alignment.
- Prior(g): prior probability of a given genotypes
- P(*D*|*x*): conditional probability to get the observed data D of a given genotype

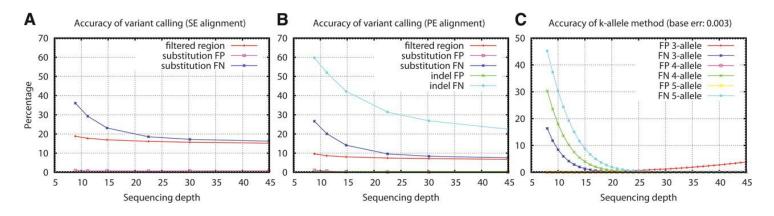
	А	с	G	т
A C G T	$3.33 imes 10^{-4}$	$\frac{1.11 \times 10^{-7}}{8.33 \times 10^{-5}}$	$\begin{array}{c} 6.67 \times 10^{-4} \\ 1.67 \times 10^{-4} \\ 0.9985 \end{array}$	$\begin{array}{c} 1.11 \times 10^{-7} \\ 2.78 \times 10^{-8} \\ 1.67 \times 10^{-4} \\ 8.33 \times 10^{-5} \end{array}$

Assuming that the reference allele is G, the homozygous SNP rate is 0.0005, the heterozygous SNP rate is 0.001, and the ratio of transitions versus transversions is 4.

Diploid Ti contain 10 types: AA,CC,GG,TT,AC,AG,AT,CG,CT,GT;

P((Base,quality)|Ti) = P((Base,quality)|Ti1) /2 + P((Base,quality)|Ti2) /2

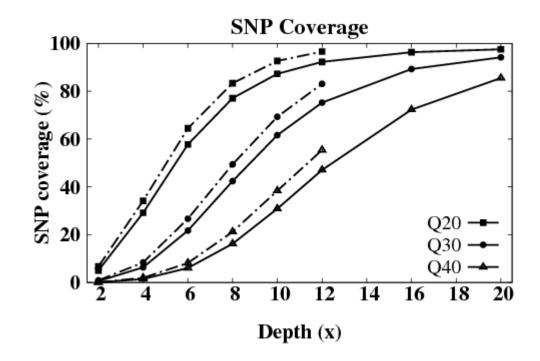
$$P(D|Ti) = \prod P((Base, quality)|Ti)$$


- By comparing the reference allele and the consensus genotype with maximum Bayesian likelihood, decisions of SNP status are made.
- But this is only the candidate SNPs, the accuracy is not reliable, especially when the mapped reads depth is low.
- In addition, we used some other measures to get confident SNPs, such as the minimum supporting reads number for each allele, exclude SNP predictions on repeat regions, and the rank-sum test for heterozygous SNP.

GATOGATC

Other software to identify SNPs

• MAQ provides modules to identify SNPs. Error rates were calculated at each position thus SNPs were identified.



Samtools, using sam/bam files, identifies SNPs in individual or populations.

PGATCGATCGATCGATCGATCGAT

Detect SNPs at different depth

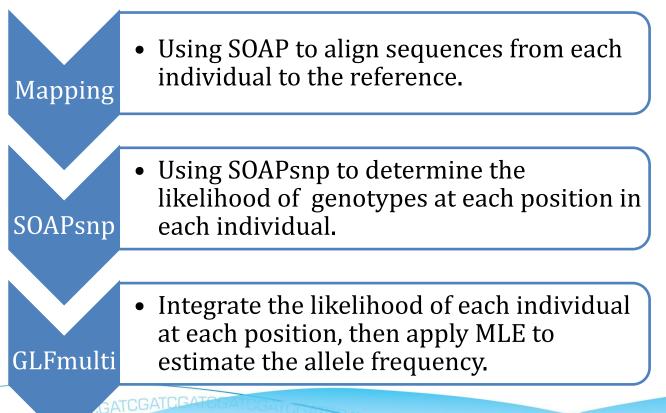
In population studies, sequencing depth of each individual is always low. Then, how can we detect SNPs?

• Sequencing in population

GATEGATEGATEG

- Several individuals sequenced
- Sequencing depth of each individual is relatively low (0.1-20X).
- Total depth is high, several hundred times.

GATEGATEGATEGATEGATEGAT


Detect SNPs in population

Sequencing depth	Genome coverage ratio	Identified SNP ratio	Study purpose
Low (1-3X)	50%-80%	30%-50%	Rough population survey, infer population structure, phylogeny, and selection.
Middle (6- 10X)	90%-99%	70%-90%	Whole population sequencing, suitable for further applications, such as molecular inbreeding, and functional genomics.
High (20-40X)	99.9%~100 %	95%-99%	Complete map (de novo assembly) for each subspecies, line, or individual, suitable for all kinds of future applications.

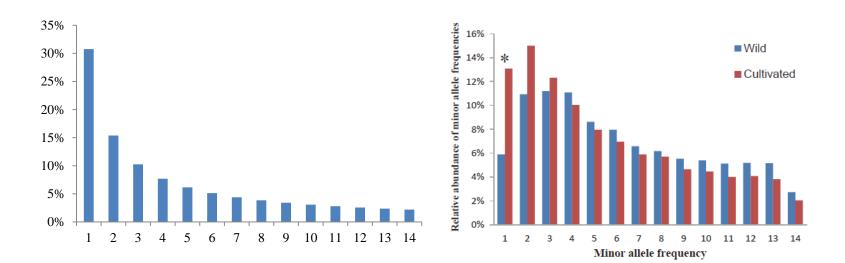
ATOGATT

• To detect SNPs in population (applied in silkworm paper)

• Frequency at each site with the maximum likelihood is given.

GATEGATEGATEGA

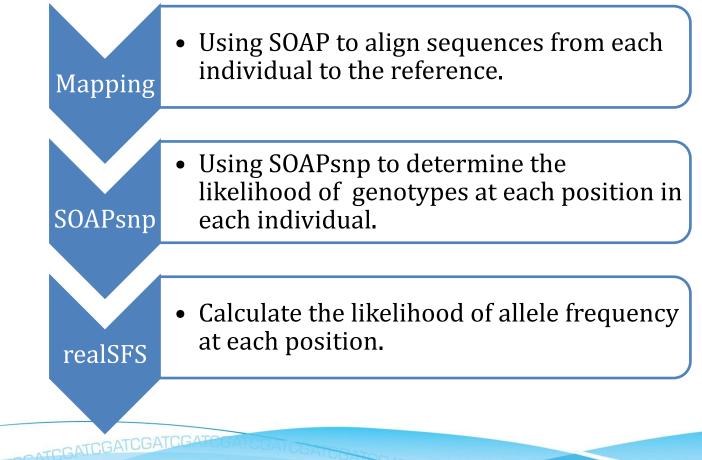
• Copy number, sequencing depth, quality score and minor allele count are integrated into one score.



CGATEGATC

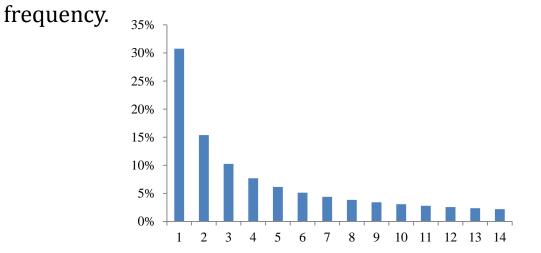
PGATCGATCGATCGATCGATCGAT

GLFmulti


• SNPs were confidential, but SNPs at low frequency were underestimated.

realSFS

 To detect SNPs in population (applied in Tibetan paper)


SATOGAT

1. Likelihood of different allele frequency.

	0	1	2	3	4	5	
Individual1	P0	P1	P2	-	-	-	-
Individual2	P0*P0(2)	P1*P0(2)+P0*P 1(2)	P2*P0(2)+P0*P2(0)+P1 *P1(2)	P1*P2(2)+P2*P 1(0)	P2*P2(2)	-	-

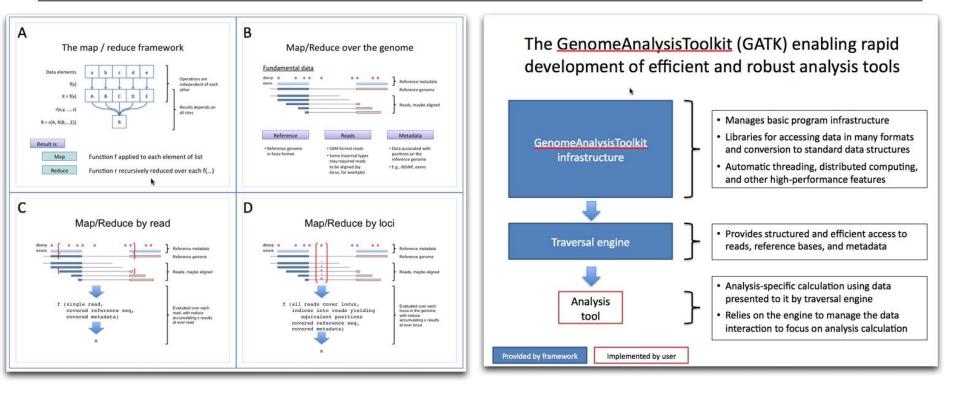
2. Prior probability of different allele

GATCGATCGATCGATCGATCGAT

- Detect SNPs at low depth of each individual (lowest 0.4X depth).
- Relatively higher false positive ratio.

CGATCGATCGATCGA

华大基因研究院 Other software to detect SNPs


- GATK: a widely used software/pipeline to detect variations, especially for human population (<u>http://www.broadinstitute.org/gsa/wiki/ind</u> <u>ex.php/Main_Page</u>)
- SHORE: a pipeline used in 1000 genome project of *Arabidopsis* (<u>http://sourceforge.net/apps/mediawiki/shor</u> <u>e/index.php?title=SHORE_Documentation</u>)

华大基因研究院

SATOGATOGATO

PGATEGATEGATEGATEGATEGATE

GATK

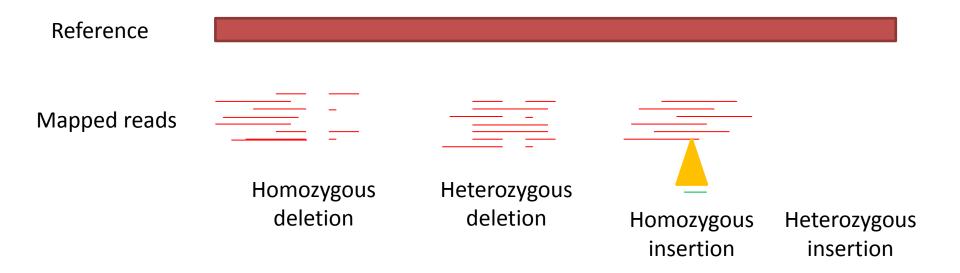
- SHORE is a data analysis and management application for short DNA/RNA reads produced by the various contemporary sequencing platforms.
- SHORE is designed to support different sequencing applications including genomic re-sequencing, ChIP-Seq, mRNA-Seq, sRNA-Seq and BS-seq.
- SHORE was developed for applications in *Arabidopsis thaliana* but has been successfully used with other genomes, including human, mouse, *D. melanogaster*, *C. elegans*, maize and several bacterial genomes.

GATEGATEGATEG

- Different methods can be applied in SNP detection in single individual.
- The main problem to cope with is the sequencing errors which would result in false positive.
- The variation calling would also depend a lot on the mapping result.
- Experimental validation is necessary.

GATEGATEGATEG

- Detect SNPs in individual require higher depth.
- Detect SNPs in population can detect SNPs at lower individual depth.
- Statistic method is usually applied in SNP calling to prevent influence of sequencing errors.
- Different statistic models show different detection power.

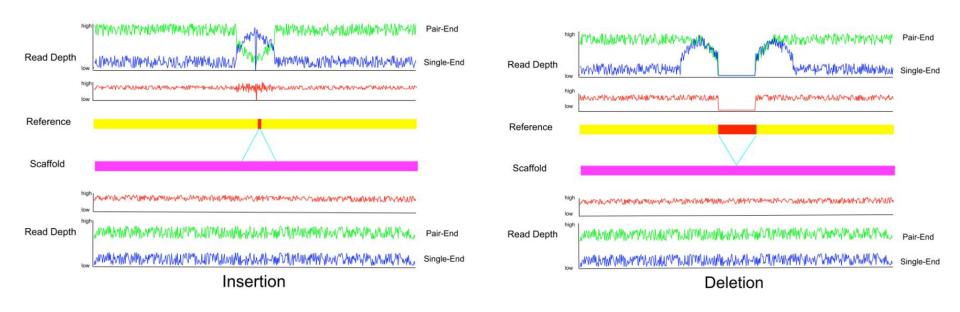


- After mapping, if the mapping permits gaps, those alignments with gaps can be the candidate for indels.
- In SOAPindel sequencing quality and mapping result were combined to deduce the probability of being an indel.

GATEGATEGATEG

Detection of indel by SOAPindel

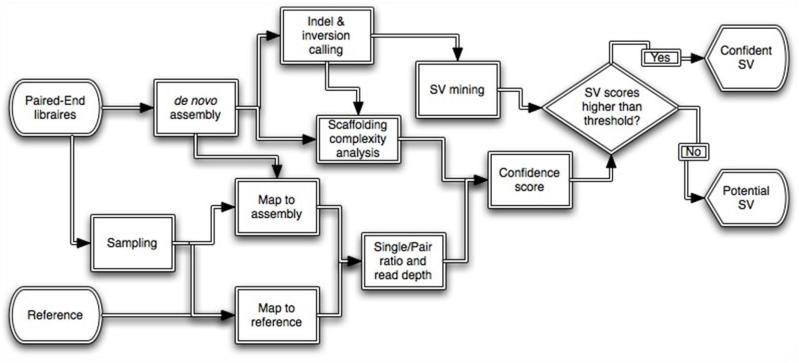
- Dindel: program for calling small indels from short-read sequence data
 - Extracts all indels from the read-alignments in the BAM file
 - Candidate InDels grouped into windows
 - For each window, Dindel will generate candidate haplotypes from the candidate indels and realign
 - Interpreting the output from Dindel

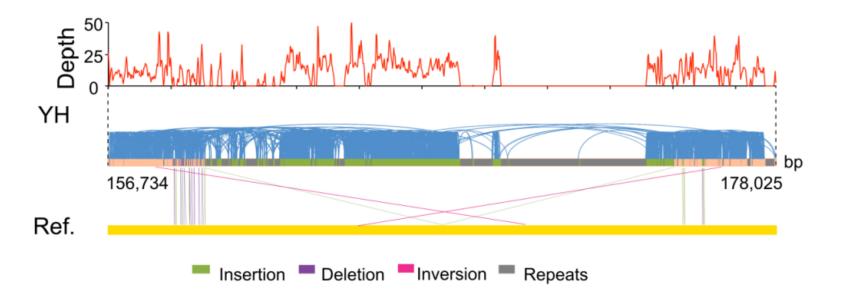


- Mainly there are three kinds of methods to detect structural variations:
 - Local *de novo* assembly
 - Pair end mapping
 - Split reads
- The SV detection based on assembly is believed to be more accurate.

Local *de novo* assembly

Assemble pair-end reads into scaffold. Align the scaffold to reference genome.


ATEGATEGATEGATEGA


GATOGATOGATO

SOAPsv

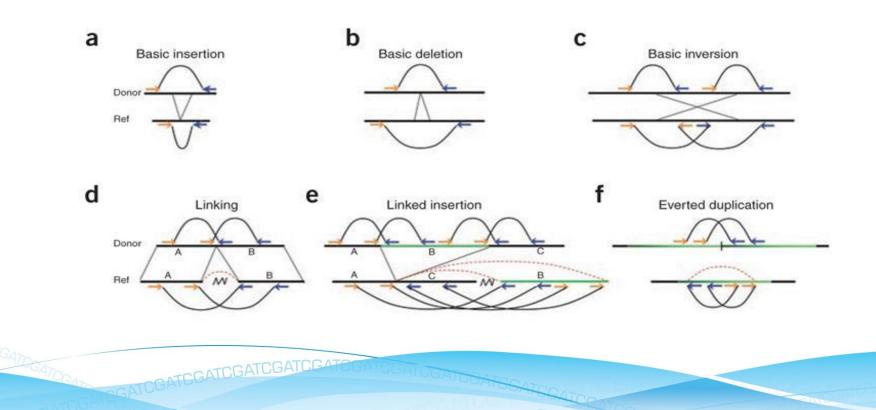
Workflow of SOAPsv:

华大基因研究院 GComplex structure variants can be detected:

Output format:

Insertion	scaffold41829	231	573	chr01	4023036 4023036	342 CAAACTATTCT	TAATTAA	TAGATAAACTGCCATGCCGCAT
Insertion	scaffold1607	1979	2129	chr03	20248959	20248959	150 CT	AGAACCCCCGCGGGGGGCAGACC
Deletion	scaffold28683	35	35	chr04	33346626	33346656	30	GTTAAGGAAATGATTTATTG
Deletion	scaffold39065	797	797	chr06	14536368	14536526	158	TGAACCAGAGCTTGCACATC

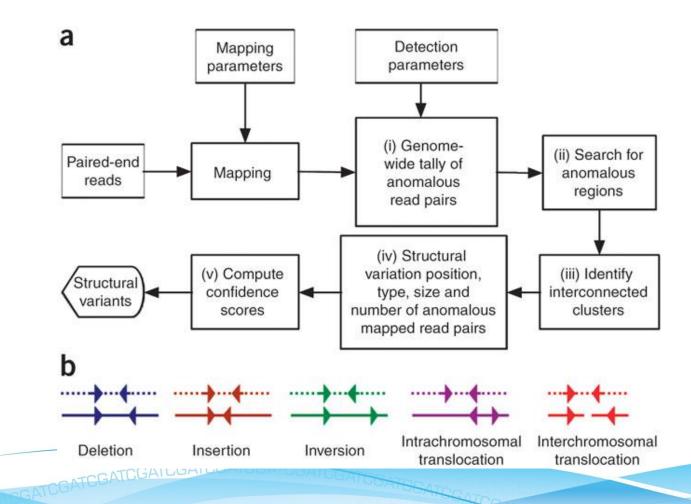
(#Type, scaffold, start, end, refChr, start, end, length, sequence)

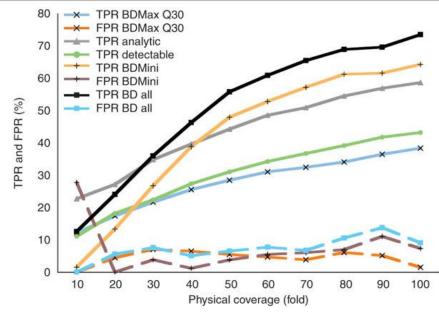

Reference:

Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., ... & Wang, J. (2011). Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. *Nature biotechnology*, *29*(8), 723-730.

Pair end mapping

- 1. Map the reads to the reference genome.
- 2. Detect structure variants by discordant reads.




JGATOGATO

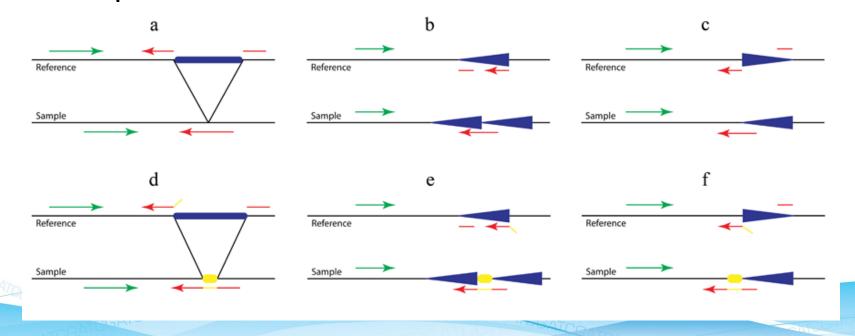
BreakDancer

Workflow of BreakDancer:

Performance of BreakDancer BG research

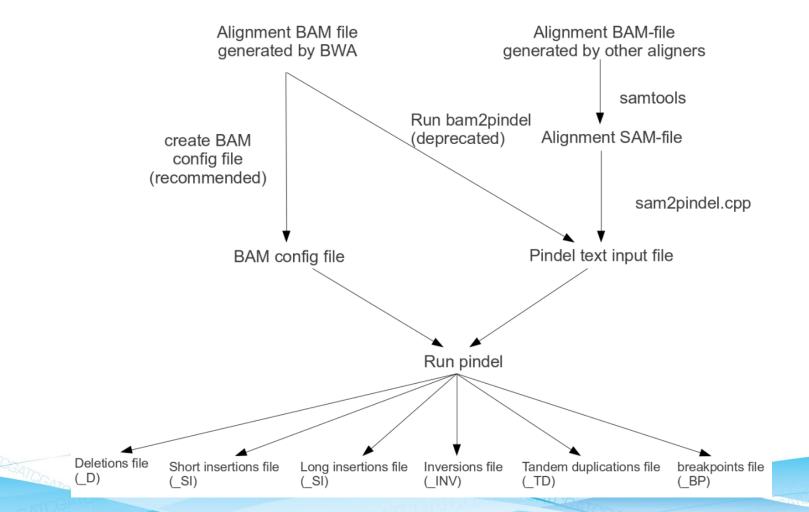
Output format:

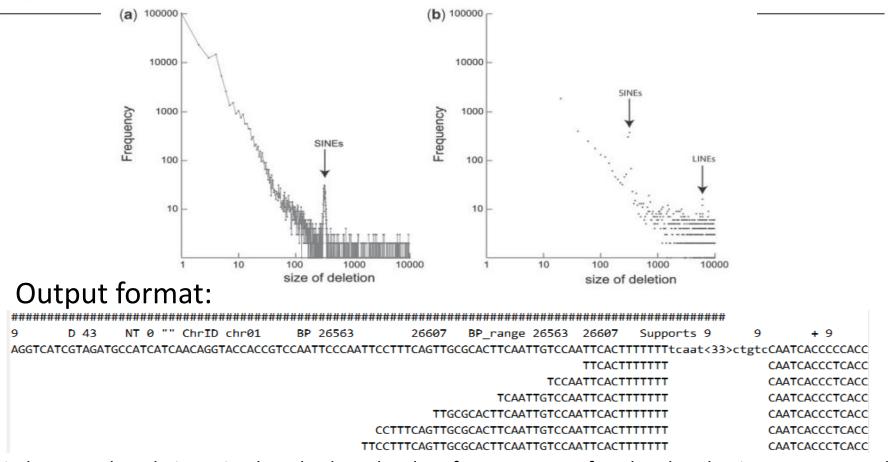
1 62767 10+0- 1 63126 0+10- INS -13 36 10 NA 10 1.00 BreakDancerMini-0.0.1 q10 1 59257 5+1- 1 60164 0+5- DEL 862 99 5 nA|2:tB|1 0.56 BreakDancerMax-0.0.1 c4 1 10000 10+0- 2 20000 7+10- CTX -296 99 10 tB 10 1.00 BreakDancerMax-0.0.1 t1


(#chromosome, position, orientation, chromosome, position, orientation, type, length, score ...)

Reference:

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., ... & Mardis, E. R. (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods, 6(9), 677-681. ATCGATCGATCGATCG


- 1. Map the reads to reference genome.
- 2. Select those paired reads that mapped with indels or of which only one end can be mapped.
- 3. Uses the mapped reads to determine the anchor point on the reference genome and the direction of the unmapped



Pindel

Workflow of Pindel:

Stines and LINEs can be detected by Pindel:

(#index, type, length, insertion length, chrID, border of event, range of unclear breakpoint, support number)

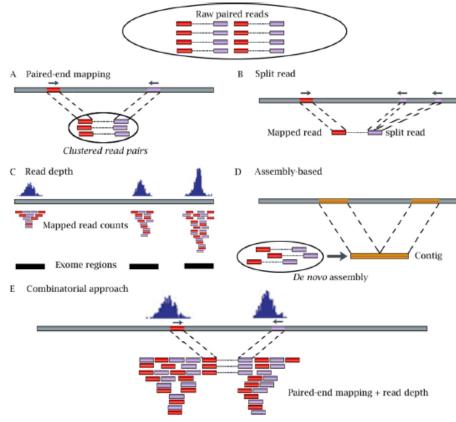
Reference:

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., & Ning, Z. (2009). Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. *Bioinformatics*, 25(21), 2865-2871.

Comparison

Tools	SOAPsv	BreakDancer	Pindel
Main detectable length range	1 bp-50 kbp	>10bp	1bp-30kbp
Detectable SV types			
Insertions	Yes	Yes	Yes
Deletions	Yes	Yes	Yes
Inversions	Yes	Yes	Yes
Complex	Yes	Yes	No
Precision of breakpoints	Single base	A short ambiguous range	Single base
Genotypes of SV events	Yes	No	Yes
False-positive rate in simulated data	1.20%	9.1–10.3%	<2%
False-negative rate in simulated data	9.60%	26–32% R., & Wang, J. (2011). Stru	~20%

*Reference: Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., ... & Wang, J. (2011). Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. *Nature biotechnology*, *29*(8), 723-730. (Table2)



The CNV detection

- Depth of Coverage (DOC):
 - Number of reads in a region
 - Uniform depth distribution
 - Biased for GC etc.
- Paired End Mapping (PEM):
 - Proper pairing when mapping
 - Limit by insert sizes

ATEGATEGATEGATEG

- Inversions/Translocations
- Split Reads (SR)
 - The unaligned reads
 - Pinpoint the location of CNV
- Assembly based (AS)

Zhao et al. BMC Bioinformatics 2013, 14(Suppl 11):S1

华大基因研究院

Summary of CNV detect tools

Method	URL	Language	Input	Comments
	UNE .	Language	input	comments
PEM-based BreakDancer	http://breakdancer.sourceforge.net/	Perl, C++	Alignment files	Predicting insertions, deletions, inversions, inter- and intra-chromosomal translocations
PEMer	http://sv.gersteinlab.org/pemer/	Perl, Python	FASTA	Using simulation-based error models to call SVs
VariationHunter	http://compbio.cs.sfu.ca/strvar.htm	С	DNET ^a	Detecting insertions, deletions and inversions
commonLAW	http://compbio.cs.sfu.ca/strvar.htm	C++	Alignment files	Aligning multiple samples simultaneously to gain accurate SVs using maximum parsimony model
GASV	http://code.google.com/p/gasv/	Java	BAM	A geometric approach for classification and comparison of structural variants
Spanner	N/A	N/A	N/A	Using PEM to detect tandem duplications
SR-based				
AGE	http://sv.gersteinlab.org/age	C++	FASTA	A dynamic-programming algorithm using optimal alignments with gap excision to detect breakpoints
Pindel	http://www.ebi.ac.uk/~kye/pindel/	C++	BAM /FASTQ	Using a pattern growth approach to identify breakpoints of various SVs
SLOPE	http://www-genepi.med.utah.edu/suppl/ SLOPE	C++	SAM/FASTQ/ MAQ ^b	Locating SVs from targeted sequencing data
SRIC	N/A	N/A	BLAT output	CalibratingSV calling using realistic error models
AS-based				
Magnolya	http://sourceforge.net/projects/magnolya/	Python	FASTA	Calling CNV from co-assembled genomes and estimating copy number with Poisson mixture model
Cortex assembler	http://cortexassembler.sourceforge.net/	С	FASTQ/FASTA	Using alignment of <i>de novo</i> assembled genome to build de Bruijn graph to detect SVs
TIGRA-SV	http://gmt.genome.wustl.edu/tigra-sv/	С	SV calls ^c + BAM	Local assembly of SVs using the iterative graph routing assembly (TIGRA) algorithm

Method	URL	Language	Input	Combination
NovelSeq	http://compbio.cs.sfu.ca/strvar.htm	C	FASTA/SAM	PEM+AS
HYDRA	http://code.google.com/p/hydra-sv/	Python	Discordant paired-end mappings	PEM+AS
CNVer	http://compbio.cs.toronto.edu/CNVer/	Perl, C++	BAM/aligned positions	PEM+RD
GASVPro	http://code.google.com/p/gasv/	C++	BAM	PEM+RD
Genome STRIP	http://www.broadinstitute.org/software/genomestrip/genome-strip	Java, R	BAM	PEM+RD
SVDetect	http://svdetect.sourceforge.net/	Perl	SAM/BAM/ELAND	PEM+RD
inGAP-sv	http://ingap.sourceforge.net/	Java	SAM	PEM+RD
SVseq	http://www.engr.uconn.edu/~jiz08001/svseq.html	C	FASTQ/BAM	PEM+SR
Nord et al.	N/A	N/A	N/A	RD+SR

Software to detect CNV

• CNVer <u>http://compbio.cs.toronto.edu/CNVer/</u>

GATCGATCGATCGATCGATCGATCGATCG

60

- Repeat regions would have great impact.
- Mapping depth should be carefully inspected especially when the pair-end mapping was done.
- It is always difficult to give the actual copy numbers.

GATCGATCGATCG

- Different models are available in SNP calling of a single individual, and good methods should take care of both sequencing and mapping quality.
- Indels can be easily detected by interpreting the gapped alignment, and the accuracy do depend greatly on the mapping.
- Using assembly to find SVs is more accurate in practice than using pair-end information.
- Depth of coverage was applied in CNV detection.

CGATDGATT

PGATCGATCGATCGATCGATCGATC

Thanks!